Source code for l2l.optimizees.mnist.optimizee
from collections import namedtuple
import numpy as np
from sklearn.datasets import load_digits, fetch_mldata
from l2l.optimizees.optimizee import Optimizee
from .nn import NeuralNetworkClassifier
MNISTOptimizeeParameters = namedtuple('MNISTOptimizeeParameters', ['n_hidden', 'seed', 'use_small_mnist'])
[docs]class MNISTOptimizee(Optimizee):
"""
Implements a simple function optimizee. Functions are generated using the FunctionGenerator.
NOTE: Make sure the optimizee_fitness_weights is set to (-1,) to minimize the value of the function
:param traj:
The trajectory used to conduct the optimization.
:param parameters:
Instance of :func:`~collections.namedtuple` :class:`.MNISTOptimizeeParameters`
"""
def __init__(self, traj, parameters):
super().__init__(traj)
if parameters.use_small_mnist:
# 8 x 8 images
mnist_digits = load_digits()
n_input = np.prod(mnist_digits.images.shape[1:])
n_images = len(mnist_digits.images) # 1797
data_images = mnist_digits.images.reshape(n_images, -1) / 16. # -> 1797 x 64
data_targets = mnist_digits.target
else:
# 28 x 28 images
mnist_digits = fetch_mldata('MNIST original')
n_input = np.prod(mnist_digits.data.shape[1:])
data_images = mnist_digits.data / 255. # -> 70000 x 284
n_images = len(data_images)
data_targets = mnist_digits.target
self.n_images = n_images
self.data_images, self.data_targets = data_images, data_targets
seed = parameters.seed
n_hidden = parameters.n_hidden
seed = np.uint32(seed)
self.random_state = np.random.RandomState(seed=seed)
n_output = 10 # This is always true for mnist
self.nn = NeuralNetworkClassifier(n_input, n_hidden, n_output)
self.random_state = np.random.RandomState(seed=seed)
# create_individual can be called because __init__ is complete except for traj initializtion
indiv_dict = self.create_individual()
for key, val in indiv_dict.items():
traj.individual.f_add_parameter(key, val)
traj.individual.f_add_parameter('seed', seed)
[docs] def create_individual(self):
"""
Creates a random value of parameter within given bounds
"""
weight_shapes = self.nn.get_weights_shapes()
cumulative_num_weights_per_layer = np.cumsum([np.prod(weight_shape) for weight_shape in weight_shapes])
flattened_weights = np.empty(cumulative_num_weights_per_layer[-1])
for i, weight_shape in enumerate(weight_shapes):
if i == 0:
flattened_weights[:cumulative_num_weights_per_layer[i]] = \
self.random_state.randn(np.prod(weight_shape)) / np.sqrt(weight_shape[1])
else:
flattened_weights[cumulative_num_weights_per_layer[i - 1]:cumulative_num_weights_per_layer[i]] = \
self.random_state.randn(np.prod(weight_shape)) / np.sqrt(weight_shape[1])
# return dict(weights=self.random_state.randn(cumulative_num_weights_per_layer[-1]))
return dict(weights=flattened_weights)
[docs] def bounding_func(self, individual):
"""
Bounds the individual within the required bounds via coordinate clipping
"""
return individual
[docs] def simulate(self, traj):
"""
Returns the value of the function chosen during initialization
:param ~l2l.utils.trajectory.Trajectory traj: Trajectory
:return: a single element :obj:`tuple` containing the value of the chosen function
"""
# configure_loggers(exactly_once=True) # logger configuration is here since this function is paralellised
# taken care of by jube
flattened_weights = traj.individual.weights
weight_shapes = self.nn.get_weights_shapes()
cumulative_num_weights_per_layer = np.cumsum([np.prod(weight_shape) for weight_shape in weight_shapes])
weights = []
for i, weight_shape in enumerate(weight_shapes):
if i == 0:
w = flattened_weights[:cumulative_num_weights_per_layer[i]].reshape(weight_shape)
else:
w = flattened_weights[
cumulative_num_weights_per_layer[i - 1]:cumulative_num_weights_per_layer[i]].reshape(weight_shape)
weights.append(w)
self.nn.set_weights(*weights)
return self.nn.score(self.data_images, self.data_targets)