Optimizer using Evolutionary Algorithm¶
GeneticAlgorithmOptimizer¶
-
class
l2l.optimizers.evolution.optimizer.GeneticAlgorithmOptimizer(traj, optimizee_create_individual, optimizee_fitness_weights, parameters, optimizee_bounding_func=None)[source]¶ Bases:
l2l.optimizers.optimizer.OptimizerImplements evolutionary algorithm
Parameters: - traj (Trajectory) – Use this trajectory to store the parameters of the specific runs. The parameters should be initialized based on the values in parameters
- optimizee_create_individual – Function that creates a new individual
- optimizee_fitness_weights – Fitness weights. The fitness returned by the Optimizee is multiplied by these values (one for each element of the fitness vector)
- parameters – Instance of
namedtuple()GeneticAlgorithmOptimizercontaining the parameters needed by the Optimizer
-
post_process(traj, fitnesses_results)[source]¶ See
post_process()
GeneticAlgorithmParameters¶
-
class
l2l.optimizers.evolution.optimizer.GeneticAlgorithmParameters¶ Bases:
tupleParameters: - seed – Random seed
- popsize – Size of the population
- CXPB – Crossover probability
- MUTPB – Mutation probability
- NGEN – Number of generations simulation should run for
- indpb – Probability of mutation of each element in individual
- tournsize – Size of the tournamaent used for fitness evaluation and selection
- matepar – Paramter used for blending two values during mating
-
CXPB¶
-
MUTPB¶
-
NGEN¶
-
indpb¶
-
matepar¶
-
mutpar¶
-
popsize¶
-
seed¶
-
tournsize¶